Is it possible to integrate lnx/ (1+x²)?
👇🏾👇🏾
👇🏾👇
🏾
Yes, it is possible to integrate 1+x2lnx. Here is the step-by-step solution using integration by parts.
We start with the integral:
I=∫1+x2lnxdx
We use integration by parts, where we set u=lnx and dv=1+x21dx. Then, we need to find du and v:
u=lnx⟹du=x1dx
dv=1+x21dx⟹v=arctanx
Using the integration by parts formula:
∫udv=uv−∫vdu
Substituting u, du, v, and dv:
I=∫1+x2lnxdx=lnx⋅arctanx−∫arctanx⋅x1dx
We now need to evaluate the remaining integral:
J=∫xarctanxdx
👇🏾
To integrate J, we use a substitution method. Let:
t=arctanx⟹x=tant⟹dx=sec2tdt
Now substitute into the integral:
J=∫tantt⋅sec2tdt
Since tant=x, we have:
sec2t=1+tan2t=1+x2
Substituting tant=x and sec2t=1+x2 back, we get:
J=∫tdt
The integral of t is straightforward:
J=∫tdt=2t2+C
Substituting back t=arctanx:
J=2(arctanx)2+C
Therefore, the integral I becomes:
I=lnx⋅arctanx−∫arctanx⋅x1dx
I=lnx⋅arctanx−2(arctanx)2+C
So, the integral of 1+x2lnx is:
∫1+x2lnxdx=lnx⋅arctanx−2(arctanx)2+C