Is it possible to integrate lnx/ (1+x²)?

 Is it possible to integrate lnx/ (1+x²)?

👇🏾👇🏾






👇🏾👇

🏾

Yes, it is possible to integrate ln𝑥1+𝑥2. Here is the step-by-step solution using integration by parts.

We start with the integral: 𝐼=ln𝑥1+𝑥2𝑑𝑥

We use integration by parts, where we set 𝑢=ln𝑥 and 𝑑𝑣=11+𝑥2𝑑𝑥. Then, we need to find 𝑑𝑢 and 𝑣: 𝑢=ln𝑥    𝑑𝑢=1𝑥𝑑𝑥 𝑑𝑣=11+𝑥2𝑑𝑥    𝑣=arctan𝑥

Using the integration by parts formula: 𝑢𝑑𝑣=𝑢𝑣𝑣𝑑𝑢

Substituting 𝑢, 𝑑𝑢, 𝑣, and 𝑑𝑣: 𝐼=ln𝑥1+𝑥2𝑑𝑥=ln𝑥arctan𝑥arctan𝑥1𝑥𝑑𝑥

We now need to evaluate the remaining integral: 𝐽=arctan𝑥𝑥𝑑𝑥

To integrate 𝐽, we use a substitution method. Let: 𝑡=arctan𝑥    𝑥=tan𝑡    𝑑𝑥=sec2𝑡𝑑𝑡

Now substitute into the integral: 𝐽=𝑡tan𝑡sec2𝑡𝑑𝑡

Since tan𝑡=𝑥, we have: sec2𝑡=1+tan2𝑡=1+𝑥2 Substituting tan𝑡=𝑥 and sec2𝑡=1+𝑥2 back, we get: 𝐽=𝑡𝑑𝑡

The integral of 𝑡 is straightforward: 𝐽=𝑡𝑑𝑡=𝑡22+𝐶

Substituting back 𝑡=arctan𝑥: 𝐽=(arctan𝑥)22+𝐶

Therefore, the integral 𝐼 becomes: 𝐼=ln𝑥arctan𝑥arctan𝑥1𝑥𝑑𝑥 𝐼=ln𝑥arctan𝑥(arctan𝑥)22+𝐶

So, the integral of ln𝑥1+𝑥2 is: ln𝑥1+𝑥2𝑑𝑥=ln𝑥arctan𝑥(arctan𝑥)22+𝐶


Post a Comment

Previous Post Next Post