How can you prove that cos ((a+b) /2) = (sina -sinb) / (2sin ((a-b/2)?

 How can you prove that cos ((a+b) /2) = (sina -sinb) / (2sin ((a-b/2)?👇🏾👇 🏾










prove the trigonometric identity

cos(𝑎+𝑏2)=sin𝑎sin𝑏2sin(𝑎𝑏2),

we can use some trigonometric identities and manipulations. Here's the step-by-step proof:

  1. Start with the sum-to-product identities for sine:

    sin𝑎sin𝑏=2cos(𝑎+𝑏2)sin(𝑎𝑏2).
  2. Substitute this identity into the right-hand side of the equation we want to prove:

    sin𝑎sin𝑏2sin(𝑎𝑏2).
  3. Replace sin𝑎sin𝑏 using the sum-to-product identity:

    sin𝑎sin𝑏=2cos(𝑎+𝑏2)sin(𝑎𝑏2).
  4. Now, substitute this expression into the right-hand side of our equation:

    2cos(𝑎+𝑏2)sin(𝑎𝑏2)2sin(𝑎𝑏2).
  5. Simplify the fraction:

    2cos(𝑎+𝑏2)sin(𝑎𝑏2)2sin(𝑎𝑏2)=cos(𝑎+𝑏2).
  1. Notice that the sin(𝑎𝑏2) terms cancel out:

    cos(𝑎+𝑏2).

Thus, we have shown that

cos(𝑎+𝑏2)=sin𝑎sin𝑏2sin(𝑎𝑏2),

which completes the proof.


Post a Comment

Previous Post Next Post