How can I find the value of x if 3^2x+1=2^x-1?👇🏾👇
🏾
👇🏾👇🏾
To find the value of x in the equation 32x+1=2x−1, follow these steps:
Rewrite the Equation:
32x+1=2x−1
Take the Natural Logarithm of Both Sides:
ln(32x+1)=ln(2x−1)
Use the Logarithm Power Rule:
(2x+1)ln(3)=(x−1)ln(2)
Distribute the Logarithms:
2xln(3)+ln(3)=xln(2)−ln(2)
Isolate Terms Involving x:
2xln(3)−xln(2)=−ln(2)−ln(3)
Factor Out x:
x(2ln(3)−ln(2))=−ln(2)−ln(3)
Solve for x:
x=2ln(3)−ln(2)−ln(2)−ln(3)
This expression gives the exact solution for x.
To simplify and verify, we can calculate the numerical value:
Calculate the Values of the Logarithms:
- ln(2)≈0.693
- ln(3)≈1.099
Substitute and Simplify:
x=2×1.099−0.693−(0.693+1.099)=2.198−0.693−1.792=1.505−1.792≈−1.19
Thus, the approximate value of x is −1.19.