How can I find the value of x if 3^2x+1=2^x-1?

 How can I find the value of x if 3^2x+1=2^x-1?👇🏾👇 🏾







👇🏾👇🏾






To find the value of 𝑥 in the equation 32𝑥+1=2𝑥1, follow these steps:

  1. Rewrite the Equation:

    32𝑥+1=2𝑥1
  2. Take the Natural Logarithm of Both Sides:

    ln(32𝑥+1)=ln(2𝑥1)
  3. Use the Logarithm Power Rule:

    (2𝑥+1)ln(3)=(𝑥1)ln(2)
  4. Distribute the Logarithms:

    2𝑥ln(3)+ln(3)=𝑥ln(2)ln(2)
  5. Isolate Terms Involving 𝑥:

    2𝑥ln(3)𝑥ln(2)=ln(2)ln(3)
  6. Factor Out 𝑥:

    𝑥(2ln(3)ln(2))=ln(2)ln(3)
  7. Solve for 𝑥:

    𝑥=ln(2)ln(3)2ln(3)ln(2)

This expression gives the exact solution for 𝑥.

To simplify and verify, we can calculate the numerical value:

  1. Calculate the Values of the Logarithms:

    • ln(2)0.693
    • ln(3)1.099
  2. Substitute and Simplify:

    𝑥=(0.693+1.099)2×1.0990.693=1.7922.1980.693=1.7921.5051.19

Thus, the approximate value of 𝑥 is 1.19.

Post a Comment

Previous Post Next Post